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Electronic Collisions Drive a Multitude of Common 
Physical Devices and Chemical Changes

High Intensity 
Plasma Arc Lamp 
(OSRAM-Sylvania)

 Plasma-etched Gate 
0.12 microns wide, 
(Bell Labs --Lucent 
Technologies)

Cascades of secondary electrons 
from ionizing radiation

Electronic dissociative attachment causes 
most breaks in DNA strands from radiation



Electron Impact Processes 

•  Electronic excitation ( Any sym-
metry and singlet to singlet and singlet to triplet)

•  Electron impact dissociation

•  Dissociative attachment

•  Electron impact ionization

Contrast photoexcitation and photoionization
•
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Collisions and Electronic Structure of Atoms 
and Molecules 

Schrodinger Equation: 

P. A. M. Dirac: “The underlying physical laws necessary 
for the mathematical theory of a large part of physics and 
the whole of chemistry are thus completely known, and 
the difficulty is only that the exact application of these 
laws leads to equations much too complicated to be solu-
ble.”

In the year 2002 we are still solving them:

•Walter Kohn and John Pople won Nobel Prize in 1998 for Density 
Functional Theory (DFT) and the application of computational 
chemistry. DFT addresses lowest energy state only.

•Theoretical Chemistry and Molecular Physics are still full of hard 
problems -- excited states, dynamics, reactions, condensed phases... 

HΨ EΨ= ih-
t∂

∂Ψ
HΨ=



Quantum Mechanics of Two-Electron Systems

A (very) brief history:

•Hylleraas (1930’s) and Pekeris (1950’s) -- developed the formalism 
and the algorithms to compute the “exact” bound states of helium.

•1961-- C. Schwartz solved the scattering problem for e-+ H elastic 
collisions

•1961 to 1990 -- excitation cross sections below ionization threshold, 
first computed accurately by P. Burke and coworkers.

•1993 -- I. Bray and A. Stelbovics computed excitation above IP and 
total ionization cross section.

The formal theory of ionization was worked out in the 1960’s by Rudge 
and Seaton and by Peterkop, but has never been implemented numer-
ically to solve the scattering problem.



Why is this two-electron problem so hard?

•Electron impact ionization (of hydrogen) was the 
only two-electron problem not completely 
“solved” by the 1990s. 

•All other aspects of two-electron problems except 
those with two electrons in the continuum were 
solved by then, in the sense of being completely 
reduced to practical computation.



Collisions and Electronic Structure of Atoms 
and Molecules 

All interactions between the particles involved are Coulombic: 
V~q1q2/distance. So the nonrelativistic theory is perfectly well posed.

The difference between bound states and collisions: boundary condi-
tions in the Schrödinger equation  

•Bound states: as  the wave function vanishes , the 
energy  is the unknown of an eigenvalue problem.

•Scattering states: e. g.  (for one particle) 
and the energy is known.

The Scattering Amplitude, , is the unknown
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The Collision Problem Map “incoming” to “outgoing” free solns

Solve  

with boundary conditions (one particle):

in out
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Long-range Potentials: “Coulomb potentials are forever”

•Like gravitational attraction the, potential goes like  and force 
like 

•In classical mechanics: Kepler orbits, “infinitely long” eliptical 
orbits (e.g. comets), a vector constant of the motion along their 
major axis (Runge-Lenz vector).

•In quantum mechanics: logarithmic phases for electron scattering 
from an ion and for photoionization

But Coulomb potentials are even more special when two particles are unbound
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Qualitative aspects of the physics of the (e,2e) process

•“Recoil” and “Binary” peaks in the Triple Differential Cross Section

•The Wannier threshold law 

•“Wannier geometry” for ejection near threshold: Four decades of 
semiclassical investigation of the 
threshold physics.

•“Smile” in the Single Differential Cross Section at higher energies: 
more probable final states have one electron fast, the other slow.

σ E
1.127∝



The Formal Theory of Coulomb Three-Body Breakup 
The asymptotic form of the wave function for ionization was first given by Peterkop 
(1962) and Rudge and Seaton (1965):

where  and  are the hyperradius and associated 
angle, 

,  and 

 is the associated amplitude. 

• Matching to this form has proved to be computationally impractical to 
date because the logarithmic phase depends on all angles in the prob-
lem -- and it is not separable in spherical coordinates.
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Also, The Formal Theory Requires a Special Mechanism to 
Extract the Cross Section From the Exact Wave Function

The ionization amplitude is given by an expression involving 
effective charges because the standard formula,  
has an infinite phase

with

and effective charges that satisfy a condition dependent on the momenta 
(and directions) of the escaping electrons
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Exterior Complex Scaling -- A Complete Theory For The 
Two-Electron Atomic Breakup Problem

Goals: 

•Rigorously apply the boundary conditions 
of the formal theory of ionization to an ab 
initio solution of the time-independent 
Schrödinger equation -- without using them 
explicitly.

•Correctly extract the cross section for break-up from the 
solution of the time-independent Schrödinger equation

Solve for the Scattered Wave

 satisfying: 
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Exterior Complex Scaling
The mapping  can be written as

The idea is to make  large enough so that the potential can be safely truncated 
beyond that point. The full contour is used to construct , but the cross 
sections are evaluated over the finite volume (or surface) where all coordinates 
are real.
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Exterior Complex Scaling Transforms Outgoing Waves 
into Exponentially Decaying Functions
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Exterior Scaling in Two Radial Dimensions

To implement exterior scaling, the grid points are laid out along the 
complex contour, making sure the point R0 is one of the nodes, so 
that the cusp discontinuity conditions can be satisfied.

Each dimension: 458 points, R0= 100 ao, Rmax = 125 ao, 

r1

r2
real r1 complex

r2 complex (r1, r2) complex

ϑ 40°=



Numerical Implementation for Electron-Hydrogen Ionization 
Angular momentum expansion:

Example parameters from the initial calculations treating the entire problem:

458 grid points in each dimension = 209,764 total grid points
•Solution of linear equations: Use SuperLU to solve sparse system of 

209,764 linear eqs. for each (l1, l2) block

For a typical L > 2 calculation with coupling of 24 (l1, l2) pairs: 
•Conjugate Gradient Squared (CGS) using preconditioning from solu-

tion for uncoupled equations for each (l1, l2) pair, required 30-40 
iterations.

•Sparse system is of dimension 24 x 209,764 = 5,034,336 
•Solution required ~2.8 hours with 48 cpus of T3E for each set of eqs.
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Using Recent Applied Math Developments in Numerical 
Linear Algebra: Direct Sparse Solvers
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Wave function, l1=l2=1

r1

r2

ψψψψl1 l2,,,,
L

r1 r2,( )



Wave function, triplet, l1=l2=1

Wave function, l1, l2 different 



Experimental Cross Sections and Geometries
Triply Differential Cross Sections (TDCS) are differential in Energy and two angles, 
given for a particular energy sharing. They are a representation of the most detailed infor-
mation: .

Doubly Differential Cross Section (DDCS) is 

Singly Differential Cross Section (SDCS) is: 

Coplanar Scattering Geometry: Symmetric Coplanar means 

σ k1 k2,( )

σ k1 k2,( ) σ k1 k2,( )dk̂2∫=

σ k1 k2,( ) σ k1 k2,( )d k̂1dk̂2∫∫=

ε1 ε2=
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te

ct
or
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k2
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θ12

k i

k1

electron source



Triple Differential Cross Sections -- Symmetric Coplanar 17.6eV
Experiments of Röder et al. 1996.
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The natural extension of the integral formula for breakup ampli-
tudes for short-range potentials to the Coulomb case

“Two-potential” formula

• Z = 1 in final Coulomb functions necessary to eliminate one-body 
terms with numerical problems akin to “disconnected diagrams”

• For finite grids, the calculation of  the Coulomb potentials are 
truncated (at the edge of the exterior scaled grid), and a finite overall 
phase does not change the observables.

Note also, surface integral form: 

f k1 k2,( ) ϕk1

-( )ϕk2

-( )〈 |E T 1 r1⁄ 1 r2⁄+ +– ψsc| 〉=
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Triply Differential Cross Sections -- Symmetric Coplanar 17.6 eV 
Compare integral form with flux extrapolation
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Singly Differential Cross Sections, , 

(integral form and flux: singlet, triplet and total)
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Triply Differential Cross Sections Can be Described with Great 
Accuracy -- Symmetric Coplanar 30eV

0 30 60 90 120 150 180
0

0.1

0.2

0.3

0.4

0.5

θ
12

=180o

ECS (present)
ECS (flux)   
Roeder et al.

0 60 120 180 240 300 360
0

0.1

0.2

0.3

0.4

θ
12

=150o

0 60 120 180 240 300 360
0

0.05

0.1

0.15

0.2

0.25

0.3

θ
12

=120o

0 60 120 180 240 300 360
0

0.05

0.1

0.15

0.2

0.25

0.3

θ
12

=100o

0 60 120 180 240 300 360
0

0.05

0.1

0.15

0.2

0.25

θ
12

=90o

0 60 120 180 240 300 360
0

0.05

0.1

0.15

0.2

θ
12

=80o

C
ro

ss
 S

ec
ti

on
 (

10
-1

8  c
m

2 /e
V

)



0 60 120 180 240 300 360
0

0.5

1

1.5

2

2.5

θ
12

=150o

0 60 120 180 240 300 360
0

0.1

0.2

0.3

0.4

0.5

0.6

θ
12

=120o

0 60 120 180 240 300 360
0

0.05

0.1

0.15

θ
12

=100o

0 60 120 180 240 300 360
0

0.5

1

1.5

θ
2
=−150o

0 60 120 180 240 300 360
0

0.05

0.1

0.15

0.2

θ
2
=−90o

0 30 60 90 120 150 180
0

0.5

1

1.5

2

2.5

3

θ
12

=180o

ECS (2001)         
0.5 x Roeder et al.

0 60 120 180 240 300 360
0

0.5

1

1.5

2

θ
2
=−30o

0 30 60 90 120 150 180
0

0.05

0.1

0.15

0.2

θ
2
=−θ

1

“Integral Form” Allows Calculations at Lower Energies: Triply Differ-
ential Cross Sections -- Symmetric Coplanar 15.6 eV

C
ro

ss
 S

ec
ti

on
 (

10
-1

8  c
m

2 /e
V

)



For Electron-Hydrogen Ionization, The Problem Has 
Been “Reduced To Computation”

Triply Differential Cross Sections -- Symmetric Coplanar 25eV 
(from integral form)
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Unequal Energy Sharing: 
Triply Differential Cross 

Sections at 25 eV -- 
Recent Results of M. 

Baertschy



BUT

A complete solution of the simplest THREE-ELECTRON example is 
necessary to form the basis for a theory for many-electron atoms 

and molecules, because three electrons are required for a system to 
display the basic processes:

Direct ionization:  

Excitation ionization:  

Excitation autoionization: 

Multiple ionization: 
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Other Physical Phenomena in Collisional Ionization
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Positron impact ionization: Positron-
ium formation together with ionization 
-- currently no complete approach to 
separate them above the ionization 
threshold.
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Time-Dependent Approach to Electron Impact Ionization with 
Exterior Complex Scaling

The driven Schrödinger Equation, 

can be formally converted to

Exterior Complex Scaling exactly removes reflections at the boundaries
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First, a proof of principle: A model three-electron breakup 
problem with short-range potentials

Model Hamiltonian

H Ti 3e
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Completely Solving the Electron-Impact Ionization for Many-
Electron Atoms and Molecules

•The “s-wave” model for electron-Helium: 

This model has all of the types of physical processes, including autoionization, that 
can occur in the three-electron breakup problem. 

The current capability, which solves for a single radial function, , can 

be used to completely solve this s-wave model for electron-Helium breakup collisions. 

•The full Electron-Helium collision problem, all partial waves coupled, is a 
supercomputer task, but can use exactly the same algorithms.

•This work forms the foundation for an ab initio approach to the electron-
impact ionization of molecules at intermediate energies, BUT the details 
will be different: No grids, but the Exterior Complex Scaling and Time-
Propagation will carry over.

V
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i j>
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Ψsc
+

r1 r2 r3, ,( )



• The most successful approach to 
the Coulomb breakup problem 
avoided the formal boundary con-
ditions (in a rigorous fashion) -- 
but that may not always be neces-
sary.

• A basis for accurate approxima-
tions for many electron atoms will 
require the complete description 
of ionization of a two-electron tar-

get with autoionization + single and double ionization, all 
treated on the same footing.

• In the era of “complexity”, some of the 
highest-end supercomputing was nec-
essary to solve one of the most basic 
problems in atomic physics .

Concluding Observations



Additional Material



The Complex Coordinates Idea
• (Early theorems: Aguilar, Balslev, Combes and Simon -- 1970s)
• (Early computations: Doolen, Nuttall et al -- 1970s.)

Scale the coordinates of all particles according to 
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Complex Coordinates for a One-Particle System

Continuum:
 so under scaling 

but  requires 

and  so the continuous spectrum “rotates”

Resonances:
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If  the resonance wave function is square-integrable with 
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Real Energy (Hermitian )Discrete Spectral Representation Fails

because the singularities at  arise from the periodic 
motion due to reflections in a finite “box” imposed by the finite 
basis.

But Complex coordinates (or complex basis function method) fix 
the discrete spectral representation, because they eliminate the 
reflections from the box edges.
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Exterior Scaling Retains the Coulomb Logarithmic Phases
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Amplitudes in the Formal Theory of Ionization

The natural way to write the amplitude for breakup is

But Rudge and Peterkop pointed out that for Coulomb potentials if 
the integration volume is infinite, this expression has an infinite 
phase! Unless the charges satisfy the angle and energy dependent 
condition:
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A New Problem in Computing the Breakup Amplitude in the 
Three-Electron Case

For two-electrons orthogonality of the one-body continuum and bound functions simplifies the 
calculation, but in the three-electron case no such orthogonality exists. Arrangements can not be 
made orthogonal.

 

 

 BUT  so free-free 

overlaps on finite volume survive, and do not 

become delta functions.

Solution: “Asymptotic Projection”, 
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